
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2015; 00:1–28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

DataMill: A Distributed Heterogeneous Infrastructure for Robust
Experimentation

J. C. Petkovich∗, A. Oliveira1, Y. Zhang2, T. Reidemeister1, S. Fischmeister1

1 Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
2 School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

SUMMARY

Empirical systems research is facing a dilemma. Minor aspects of an experimental setup can have a
significant impact on its associated performance measurements and potentially invalidate conclusions drawn
from them. Examples of such influences, often called hidden factors, include binary link order, process
environment size, compiler generated randomized symbol names, or group scheduler assignments. The
growth in complexity and size of modern systems will further aggravate this dilemma, especially with the
given time pressure of producing results. How can one trust any reported empirical analysis of a new idea or
concept in computer science?
DataMill is a community-based services-oriented open benchmarking infrastructure for rigorous
performance evaluation. DataMill facilitates producing robust, reliable, and reproducible results. The
infrastructure incorporates the latest results on hidden factors and automates the variation of these factors.
DataMill is also of interest for research on performance evaluation. The infrastructure supports quantifying
the effect of hidden factors, disseminating the research results beyond mere reporting. It provides a platform
for investigating interactions and composition of hidden factors.
This paper discusses experience earned through creating and using an open benchmarking infrastructure.
Multiple research groups participate and have used DataMill. Furthermore, DataMill has been used for
a performance competition at the International Conference on Runtime Verification (RV) 2014, and is
currently hosting the RV 2015 competition. This paper includes a summary of our experience hosting the
first RV competition.
Copyright c© 2015 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: DataMill; performance; experimentation; infrastructure; robustness; repeatability

INTRODUCTION

Empirical computer performance evaluation is essential for computer science and industry alike.
The empirical measurement of performance sees widespread use to guide the research of new ideas
and the development of new technologies [1]. A performance improvement of a few percentage
points may mean large savings in dollars, when applied to a large data center with billions of clients.
It is also essential, then, that computer practitioners dominate the methodology necessary to evaluate
computer performance correctly.

However, the research community [2, 3, 4, 5] has demonstrated that experimental evaluation
in computer science is difficult. As a consequence, experiment design, setup, analysis, and data

∗Correspondence to: Jean-Christophe Petkovich, Electrical and Computer Engineering, University of Waterloo,
Waterloo, ON, N2L 3G1, Canada. Email: j2petkov@uwaterloo.ca

Contract/grant sponsor: CMC ISOP; contract/grant number: IS09-06-037

Copyright c© 2015 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 J. C. PETKOVICH ET AL.

reporting are often neglected. Results obtained from experimentation are sensitive to the experiment
design and setup. Conclusions drawn from performance experiments may vary across a combination
of hardware and software factors. Sometimes subtle changes to an experiment’s setup can have a
significant impact on its outcome [6]. The lack of rigorous performance evaluation is often blamed
on the fact that experimentation is difficult and costly [4], but those obstacles are not insurmountable.

To improve the current state of experimentation, we proposed DataMill [7, 8]. DataMill
is a distributed infrastructure for computer performance experimentation targeted at scientists,
researchers, and aspiring researchers. DataMill aims to allow the user to easily produce robust,
replicable, and reproducible results at low cost. To do so, DataMill executes the experiments on
real hardware and incorporates the results from existing research on how to design experiments
and evaluate hidden factors. For example, the infrastructure automatically varies a selection of
hardware and software factors, and therefore reduces the effort required by the user to setup and
configure the experiment while simultaneously increasing the robustness and applicability of the
experiments results to a wide range of factor levels. The user need not know the details of the
underlying mechanisms required to vary these factors and may simply take advantage of DataMill’s
infrastructure. DataMill is mainly developed by the University of Waterloo, however, several
universities (e.g., Purdue University, the University of Pennsylvania, the University of Lugano,
and the Federal University of Santa Catarina) have already joined the effort and have provided
benchmarking nodes. Over the past year, DataMill executed 641 experiments and 53 530 jobs. A
total of 908 days of computing time were spent running scripts submitted by users in experiment
packages.

Besides easing experimentation effort and cost for the user, DataMill also aims to alleviate
the problem of data availability and the reproduction of experimental setups. Based on our own
experience, few researchers responded to inquiries for experiment setup details and raw data used
in their publications. In DataMill, all experiment setup parameters and their experiment files remain
stored in the infrastructure. Users can choose to make their experiments public facilitating the
replication and reproduction of the their experimental setups and results. We believe DataMill has
the potential to watermark performance evaluation experiments by making the data publicly and
consistently available. Finally, DataMill and the public repository of repeatable experiments can
serve as a valuable tool for the education of aspiring researchers.

The contributions of this paper are, (1) The design and implementation a distributed infrastructure
for computer performance evaluation spanning multiple universities; (2) Revisiting design rationals
on the architecture and implementation with over two years of benchmarking experience and
hosting a benchmarking competition; (3) The reproduction and expansion of a previously published
experiment, confirming the existence of significant hidden factors; (4) A survey of current
performance evaluation practices in computer science publications, demonstrating the need for
more rigorous experimentation; and (5) A summary of our experiences and insights facilitating
a performance competition on the DataMill infrastructure.

BACKGROUND

In traditional experimental design [9, 10], factors are properties of an experiment that affect the
response variable; i.e., the metric of interest of that particular experiment. It is common knowledge
in statistics that the one-factor-at-a-time method (OFAT), which is a sequential exploration of a
design space (the space defined by the factor dimensions), is a poor method of experimentation.
Despite its weaknesses, OFAT is the de facto standard in computer science. One alternative to OFAT,
factorial design, attempts to ascertain the effect of all factors on the response variable at the same
time, avoiding OFAT’s “blind-spots”.

In order to illustrate the state of experimental methodology in computer science, we conducted
a survey of the recent publications to SOSP 2011, ASPLOS 2012, OSDI 2012, ATC 2012,
EuroSys 2011, and PLDI 2012 in [7]. We have updated the survey with more recent conferences,
including HiPC 2013, and ASPLOS 2014, the results are shown in Table I. The columns, in order,
show the total number of papers, the fraction that contains empirical performance evaluation, the

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 3

Conference No.
of

Papers

Perf.
Eval

HW
Desc.

SW.
Desc.

A/B
Test

Formal
Test

Sanity
Check

Disp.
Met-

ric

Public
SW

Public
Load

Public
Data

SOSP’11 27 93% 92% 60% 91% 0% 24% 44% 4% 68% 0%
ASPLOS’11 36 61% 100% 55% 54% 0% 5% 31% 4% 82% 4%
ASPLOS’14 52 92% 75% 46% 46% 4% 29% 52% 54% 83% 0%

OSDI’10 30 93% 71% 61% 54% 0% 0% 32% 7% 39% 0%
ATC’12 40 95% 87% 58% 68% 0% 3% 32% 8% 26% 0%

EuroSys’11 22 86% 95% 74% 84% 12% 42% 47% 21% 58% 0%
PLDI’12 45 64% 90% 79% 93% 0% 37% 10% 24% 72% 0%
HiPC’13 49 80% 92% 59% 95% 0% 80% 13% 0% 0% 0%

Table I. Illustration of Experimental Rigor in Recent Scientific Publications

fraction that describes their hardware platforms and software versions, the fraction that contains
a comparison (either with a baseline or a competitor), the fraction of those that contain a formal
statistical test for that comparison, the fraction that performs the experiment under different
conditions as a sanity check, the fraction that contains a dispersion metric (standard deviations,
confidence intervals, empirical CDFs, etc.), and the fraction that published the software being
evaluated, the fraction that uses a publicly available workload (established benchmarks, input files,
etc.), and, finally the fraction that published their resulting data.

While many papers include an empirical performance evaluation, many papers do not list the
versions of the software used for these experiments. Worse, even more of these publications do not
contain an empirical comparison to a baseline or a competing approach. Out of those papers that
include such a comparison, only a small fraction formally tests that their performance figures are
different from the baseline. Only a few submissions make their experiment implementation and the
results publicly available. Although the benefits for using a dispersion metric have been reiterated
by many researchers [4, 2, 5] in the past, a number of papers that do a performance evaluation do
not use any measure of dispersion in their performance evaluation. With the conferences included in
our survey, we cannot completely isolate the effect of time on experimentation practices, although
we can get close with ASPLOS 2011/2014, where we see a substantial increase in published
experimentation software. Kalibera and Jones [11, 12] also report that many experiments from
ASPLOS, ISMM, PLDI, TACO, and TOPLAS are not repeatable or do not give enough evidence to
support performance improvement claims.

We performed an experiment to demonstrate the dangers of using a single experimental setup like
the majority we found in our survey. Figure 1 shows the performance measurements of Iperf [13],
a network performance benchmark, repeatedly running on a loopback interface (the machine was
disconnected from the network) in experiment blocks of one hour. The x-axis shows the blocks, and
the y-axis, which does not start at zero for space reasons, shows the bandwidth through the loopback
interface. For example, the boxplot graphic at block 6 comprises all of the iperf data collected during
the 6th hour of the experiment. We use a standard boxplot to characterize a block, adding a × symbol
to mark the mean. Each block contains 330 samples, and the machine reboots between blocks. While
performance is generally stable, in two out of 72 blocks the mean performance is approximately
10% better, even though everything else remained the same. To this date we have been unable to
find an evidence supported explanation for the phenomenon. Although no cron daemon was running
on the machine, because the performance change appears to be roughly periodic, and occurs every
24 hours, we can theorize that it has to do with the time of day. A “lucky” developer could mistake
the rare block for the norm, and report results that are a full 10% away from the average case.

Computer science experiments are susceptible to many hidden factors such as the one seen
above [14, 15, 6, 16, 17]. The systematic exploration of their effect on metrics of interest is a
difficult and time-consuming task. Automated hidden factor exploration is necessary, and would best
be handled by an experiment infrastructure. Many published results in computer science cannot be

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

4 J. C. PETKOVICH ET AL.

1.7

1.8

1.9

2.0

●●●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

●● ●●● ●

●●●●●●

●

● ● ●●●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●●

●●● ●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
Block

B
an

dw
id

th
 (

G
b/

s)

Figure 1. Iperf Performance in Blocks of 1 Hour

validated on newer platforms. Reasons include loss of data, loss of source code, loss of the original
workload, and insufficiently described experimental conditions. Automated replication and publicly
accessible setups are necessary.

Access to a wide variety of experimental setups is difficult to obtain, so experimental design
spaces are generally small, and are often comprised of just a single machine. Automated exploration
of a large design space is also necessary. Furthermore, testing an innovation on various platforms
forces one to consider more corner cases. This will overall lead to more robust innovation whose
performance is not only known on more platforms but also that works on more platforms. Specific
exploits of particular platform features only provide limited value to the research community.

It follows, therefore, that a distributed benchmarking infrastructure with the capability of varying
software and hardware factors is in order. Based on these findings, we created DataMill, an
experimentation infrastructure that addresses these shortcomings automatically. DataMill enables
users to make experiment packages, workloads, and results publicly available. DataMill collects
several performance counters available in the Linux environment and computes dispersion figures
automatically. DataMill supports experiments that contain multiple software packages to enable
a baseline comparison or a comparison with a competing approach. We believe by providing a
platform that automates the factor variation and many tasks of the experiment set up, empirical
performance evaluations will become more popular among researchers. We now present DataMill, a
world-wide open distributed performance evaluation system that aims to address the aforementioned
points and implements the lower two levels of an experiment infrastructure [2].

DATAMILL: THE USER EXPERIENCE

DataMill is a distributed computer-performance evaluation infrastructure aimed at minimizing
user effort required to get robust, reliable, and reproducible results. DataMill distributes arbitrary
benchmarks and experiments to a large number of heterogeneous worker nodes, located all over the
world, facilitating the creation of replicable results, and reducing the necessary effort to produce
robust results.

DataMill facilitates replicable results by storing details of each individual experiment
setup, allowing automated experiment reproduction. DataMill achieves robustness by varying
experimental setups across a wide set of factors, including variation of state-of-the-art known hidden

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 5

factors. DataMill is a public-service infrastructure and available to scientists around world as long
as they donate equipment for evaluations themselves.

The user experience starts with packaging the experiment for DataMill to execute, then defining
an experiment space from an array of hardware and software factors, and, finally, collecting and
analyzing the resulting data.

Packages

Each experiment contains one or more packages. A single experiment package can quantify
performance over a wide range of setups, while experiments with more than one package permit
performance comparisons across those setups.

Each package contains,
1. the source code and any input data for the experiment,
2. auxiliary DataMill-specific scripts to set up, execute, and collect the results from the

experiment.
All package components are encapsulated in a compressed TAR file.

There is no restriction on experiment code, and users have administrator-level access to workers
during experimentation. Users can generate free-form results data in arbitrary metrics, and collect
them via compressed archives. These simple features permit performance evaluation of a wide
variety of software, ranging from user-space applications to kernel modules. Security concerns are
minimal at this point, because participating users must contribute to the infrastructure and, therefore,
are well known and trusted.

There are only two scripts that every DataMill package must contain, run.sh and
collect.sh. These are the scripts that execute and collect data from the experiment, respectively.
If the package requires a setup procedure (such as decompression, compilation, dependency
installation, etc.), it may also contain a setup.sh script, which will be executed before run.sh.
Beyond these simple requirements, the package may contain anything else the user desires.

To exemplify the construction of a DataMill package, consider benchmarking bzip2 [18]. We
run Gentoo’s emerge command to compile and install bzip2 from source. Our compiler wrapper
redirects calls to GCC during the compile phase to apply various compiler factors discussed in
Section Pluggable Software Factors. While settings for these factors are set through the web
interface, all that is required in the package setup script is show in Listing 1.

1 # ! / b i n / sh
2
3 emerge bzip2

Listing 1: Setup Script

Listing 2 shows the run.sh script that records performance data. First, the script changes into
the directory bzip2 which contains files with various binary patterns for a compression benchmark.
Next, a bzip2 archive of the files in the bzip2 directory is created and timed. The output of the time
command is recorded into the bzip2-results file. Finally, the size of the bzip2 archive is appended to
bzip2-results.

1 # ! / b i n / sh
2
3 cd bzip2 /
4 (time tar −c −−bzip2 −f tmp .tar .bz2 A10 .jpg AcroRd32 .exe \
5 FP .LOG FlashMX .pdf MSO97 .DLL english .dic ohs .doc rafale .bmp \
6 vcfiu .hlp world95 .txt) >> bzip2−results 2>&1
7 (echo size ‘du tmp .tar .bz2 | cut −f 1 ‘) >> bzip2−results 2>&1

Listing 2: Run Script

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

6 J. C. PETKOVICH ET AL.

setup.sh

run.sh

collect.sh

bzip2/

Archive Root

...

Figure 2. Bzip2 Package Directory Structure

Listing 3 shows the script that packages the results file for collection. It simply compresses the
result file using a unique name, and echoes the final archive’s file name. This file will then be
downloadable by the user once the experiment finishes executing.

1 # ! / b i n / sh
2
3 results=/bzip2−results .tar .gz
4 tar czf $results /bzip2 /bzip2−results > /dev /null 2>&1
5 echo $results

Listing 3: Collect Script

The user must package the experiment source code, input data, and DataMill scripts in a GZipped
TAR file. All DataMill scripts should be in the root directory of this archive. For the Bzip2 package,
the file structure of the package would be as shown in Figure 2. The bzip2 folder contains various
files to be compressed in run.sh.

To facilitate package creation, DataMill provides users with a virtual machine image that mimics
a DataMill worker. Users can develop, test, and debug their packages in a local environment until
they are sure their packages are ready for production, at which point they can submit it for execution
via our experiment creation interface. Experiments submitted to the infrastructure are extensively
logged in a non-intrusive way, and results are reported to users through the DataMill web interface.

Experiment Creation

Once the package(s) are ready, the user submits them for execution through a file upload interface.
Users must then define an experiment for DataMill to execute. Experiment definition has three steps,

1. Package selection
2. Constraint definition
3. Experiment space definition

Package selection consists of choosing which packages will be executed; one or more packages
may be selected. In the constraint definition step, users inform DataMill of any limitations to their
benchmark. For example, if the experiment can only execute on the ARM9 architecture and requires
at least 2GB of RAM, the user expresses these constraints through an intuitive web interface.

In the experiment space definition step, users select which experimental setups they wish to
explore. The interface presents each dimension of the experiment space, divided in hardware and
software categories. Hardware factors are adjusted with sliders, and levels for software factors are
selected with checkboxes. With sliders, users can select a range for factors such as the amount of
memory on the machines for the experiment. Our user interface dynamically updates the visible
list of available workers as the user adjusts sliders and checkboxes for these factors. Showing a list
of eligible workers based on the factor selection gives the user an idea of the variety of machines
used for their experiment. Our user interface gives the user an overview of the workers at a glance,
showing important worker information through a tooltip as in Figure 3. Besides the pool of workers,
DataMill also calculates the number of jobs for the experiment as factors are changed. This provides
the user with an estimate of the queue priority for their experiment and for how long it might take.
By default, the sliders for hardware factors are set to cover the entire range. However for software

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 7

Figure 3. Tooltip for a Worker on Experiment Create Page

factors, only the default levels are selected. If the user wishes to explore the effect of a software
factor, he or she must select additional levels.

After machines are selected according to the hardware dimension settings, the software
dimensions are combined to generate each individual job. For example, if the user chose to
explore all five GCC optimization flags on a single machine, there would be one job generated
per optimization flag, all attributed to that machine. If, in conjunction with the optimization flags,
both settings of the Address Space Layout Randomization (ASLR) feature of Linux (“on” or “off”)
should be tested, then the number of jobs grows to 10 (5 flags times 2 ASLR settings). Therefore,
the number of jobs for each experiment scales with the experiment space defined by the user, and
care must be taken to avoid combinatorial explosion and an experiment with an excessive number
of jobs.

Experiment Results

After the user defines the experiment space and DataMill creates jobs, it will distribute the
experiment’s packages for execution, then collect the individual result files as they are produced.
The web interface dynamically updates experiment information as data arrives, allowing users to
monitor their experiment’s progress. This page also lists the jobs for the experiment and their status
as shown in Figure 4. During experiment execution, partial results files are available for download.

In addition to the data collected by the collect script, DataMill collects additional metrics with
minimal overhead [19], such as total execution time, and the number page faults and cache misses.
Where it makes sense, data that DataMill collects is automatically plotted and made available to the
user in a dynamically updated set of graphs. An example graph produced by DataMill for the time
taken to run the collect.sh script for an experiment is shown in Figure 5. The y-axis is the time
measured in minutes for collect.sh to execute, and the names on the x-axis are the worker hostnames
for two of the machines included in the experiment. On hovering over a box and whisker plot, the
values for the quartiles of a worker are displayed. The horizontal line across the graph marks the
average of all collect times.

Once all jobs associated with an experiment are finished, users can download the full experiment
results file. This results file contains individual results from every job. Examples of how to analyze
large datasets generated by DataMill are provided in Section Case Studies.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

8 J. C. PETKOVICH ET AL.

Figure 4. Example Experiment Details Page While an Experiment is in Progress

Figure 5. Collect Time of an Experiment on Three Workers

Inevitably, jobs will occasionally fail for many possible reasons. Despite the ability to test user
packages on a DataMill worker prototype, subtle differences between architectures can cause
a plethora of different issues, especially during dependency installation. Debugging problems
that occur on remote machines can be extremely difficult, but DataMill equips users as best it
can with the logging information that it provides. The output of the setup.sh, run.sh, and

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 9

Figure 6. Example Job Details Page

Figure 7. Example Job Factor Verification

collect.sh scripts are logged on the job details page as displayed in Figure 6. In addition
to the data collected from a given experiment, DataMill provides users with extensive logging of
performance-insensitive portions of their experiment to ease debugging effort when something goes
wrong. For example, the success of setting each factor to a level is logged with each job as in
Figure 7. In this case, frequency scaling could not be turned off on an ARM board. All the other
factors were set successfully. This kind of logging affords the user with some assurances when
they examine their results that the experiment’s trials executed as they expected. Individual failed
jobs and their logs and meta-data are also displayed the web interface. This permits convenient and
simple debugging of the majority of problems encountered during package development, testing,
and execution.

DATAMILL: THE INFRASTRUCTURE

Making the user experience described in Section DataMill: The User Experience a reality requires
considerable engineering effort. The DataMill infrastructure is composed of a master node,
responsible for the distribution of experiment trials and the collection of results, and several worker

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

10 J. C. PETKOVICH ET AL.

nodes, which execute the experiment packages provided by the users. The original design and
implementation of DataMill is reported in [7], but a great deal of the architecture has changed
in response to several challenges that we have encountered through heavy use of the infrastructure.
This section includes the highlights of the changes since the previous iteration of DataMill.

Reliability Through Factor Variation
DataMill has facilitated producing reliable results through automatic and controlled variation of

heterogeneity in user’s experiments. Although DataMill optionally provides a set of factors which
can be varied out-of-the-box for any given user’s experiment, it is crucial that we allow users to
vary factors that matter specifically to them and their experiments, even when they are outside of
the out-of-the-box factors DataMill provides.

DataMill has a generic plugin system that users can leverage to support a variety of interesting
software factors. DataMill supports this functionality by separating user’s packages into three core
tasks, experiment setup, experiment execution, and data collection. These are encapsulated in the
three experiment package scripts: setup.sh, run.sh, and collect.sh. By differentiating
between three different basic experimentation tasks, DataMill can instrument and manipulate the
environment unobtrusively during different phases of the experiment, from simple manipulation of
environment variables, to swapping out the compiler used by the package’s build system. DataMill
provides hooks for user-developed factors to run arbitrary code before and after each of the three
core phases of an experiment package.

Besides software factors, DataMill also provides heterogeneity by supporting not only new and
powerful computer hardware, but also much older legacy systems. Table VII shows a list of the
hardware of devices currently in DataMill. Repeated rows indicate that there is more than one of
the same device available for running benchmarks. Maintaining and supporting those systems is a
difficult challenge. Toward supporting a variety of different hardware, the DataMill worker software
is necessarily simple in its requirements. The most basic requirements for the worker software is
the ability to set the root filesystem for the next reboot through software. DataMill has a simple
library that sniffs for the current boot-loader and adjusts the boot-loader configuration as necessary.
Other similar testing infrastructures, such as Linaro Automated Validation Architecture (LAVA) [20]
only support platforms compatible with a particular boot-loader, and cannot support systems which
cannot boot from a remote image. Several worker features necessary for the out-of-the-box factors
that DataMill supports are machine dependent, and DataMill automatically tests workers for support
for these features when they boot. Experiments that require those features will never be scheduled
on workers that do not support them.

Keeping Machines Consistent
Each worker node is a separate machine running Gentoo Linux with kernel version 3.18.11, and

GCC 4.8.3. Gentoo Linux was chosen since it is a source-based distribution which offers several
distinct advantages for DataMill. Gentoo Linux has official support a wide variety of architectures,
nearly any architecture which has support for GCC will also support running Gentoo Linux. Having
the same distribution and tool-chain on all the machines keeps their software as homogeneous as
possible.

DataMill store the details of package versions for each experiment executed on our worker nodes
so that users can treat them as a factor during analysis if necessary. We also intend to use this data
to perform best-effort rollbacks for reproductions of previous experiments. Using a source-based
distribution allows us to avoid typical problems with package rollbacks easily, Gentoo provides
several tools for automatically detecting and resolving broken link-level dependencies which would
otherwise force us to rollback library versions and package versions in lockstep. This allows greater
isolation of performance problems, particularly when software libraries are concerned. Although
Gentoo is a source-based distribution, it does support binary packages as well. The master node acts
as a binary package mirror for the common base set of packages that are included or expected to be
used by the worker nodes, avoiding recompiling most packages redundantly.

Since DataMill workers run a source-based distribution, package updates and dependency
resolution during experiment execution can require workers to compile and link software projects.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 11

Some of our worker platforms are resource constrained, and do not meet the requirements of
compiling large and complex projects such as GCC. Or, if they were to build these projects, would
take a disproportionately long time to do so. The DataMill master node houses several distcc [21]
virtual machine servers and caches compiled object files, permitting resource constrained workers
access to hardware capable satisfying the requirements of demanding software projects. With this
infrastructure in place, resource constrained platforms such as the raspberry pi can effectively serve
as DataMill worker nodes.

Tolerating Failures
Worker nodes are expected to fail. We have paid special care to the design of the worker software

main-loop to ensure that failures are handled carefully. The primary objective of our failure handling
procedures is to ensure that any results produced by an experiment trial are both valid and complete.
Any experiment trial that does not proceed precisely as expected will still report any obtained results,
but the trial will be marked as a failure. The failures are reported to users, indicating that associated
results are to be analyzed with appropriate skepticism.

To respond to different possible failures caused either by poorly written experiment packages,
or unforeseen circumstances, workers are capable of some level of self-repair. Any incorrect
or unexpected states reached during experiment progression that are repeated for a certain time
threshold are escalated. Since these failures are more symptomatic of a systematic failure, rather
than a temporary or user initiated failure, they are escalated and responded to by detailed log and
diagnostic reports followed by deletion of all persistent state on that worker.

Debugging Experiments
Developing experiment packages that will run unaided and unguided on a remote machine is

challenging. DataMill’s answer is to fail as noisily as possible, producing logs of as much of the
non-performance-sensitive portions of user’s packages as possible, and providing access to these
logs from the DataMill web interface.

Although we make debugging remote experiment package execution as simple as possible, the
turn around time for these tests still leaves much to be desired. We created a virtual worker image
that is a fully capable DataMill worker node, on which users can test their packages on a local
virtual machine, and observe and modify their experiment interactively. In this way, they do not
need to spend precious worker node execution time on debugging, and can get the majority of their
experiment’s bugs solved with a much smaller turnaround time. Users have reported that this has
greatly improved their overall experience with the infrastructure.

Mitigating Long Execution Times
Once an experiment package is finished and working, it can still take weeks for a full experiment

to complete is a large set of factors are explored. This is because with each additional factor
and factor level, the size of the experiment space increases combinatorially. DataMill attempts
to and minimize the length of user’s experiments by using an optimization solver (see [7] for
implementation details) to reduce the set of trials down to what is necessary for estimating the
factor effect sizes of interest to the user, as in typical factorial experiment design [10].

Remote Workers and Network Access
Supporting remote workers proved more challenging than originally anticipated as differing

network management policies hampered our original push-style architecture. The master node
does not initiate any communication with workers, it is entirely passive. Previously it was active,
and triggered job execution on workers through secure shell, but this proved problematic when
registering remote workers where network policies were restrictive, and secure shell was not
permitted. We solved this problem by discarding our original Secure-Shell-based infrastructure
with an entirely passive centralized authority. The master node houses a simple dead-drop API
that allows workers to download their next available task, and to upload their results or error logs, or
notifications of failure or other problems. In this way, the communication between the master node

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

12 J. C. PETKOVICH ET AL.

and the worker nodes is strictly limited, and conforms with most network management policies
implemented by university and business networks.

FACTORS: ARCHITECTURE AND IMPLEMENTATION

DataMill facilitates execution of user supplied benchmarks using a wide variety of experimental
setups. Knowledge of factors that can influence performance and the details of the underlying
mechanics required to vary them are not necessary to leverage the infrastructure. DataMill currently
supports over twenty factors, and facilitates user contribution of factors through a plugin system.
These factors are categorized into software and hardware factors.

When an experiment is created, only workers which satisfy the selected hardware constraints
are scheduled for the experiment. For instance, if a user selects 512 MB to 1 GB of RAM for
their experiment the scheduler is limited to machines that satisfy the memory constraint. This may
come at the expense of also limiting the number of CPU cores since most of our machines with
more than 2 CPU cores have more than 1 GB of RAM. Hence, DataMill shows a machine pool
of eligible workers with tooltips. DataMill currently supports SPARC, ARM, Intel x86, and Intel
x86-64 architectures.

While hardware factors are applied during the scheduling stage, settings for software factors
are serialized and transferred to each worker along with the associated package. The worker nodes
unpack the configuration files sent by the scheduler, applying each configuration individually before
setup or execution. Software factors supported by DataMill include compilation flags, environment
paddings, and link orders. While some factors can be applied through the use of the proc
filesystem, other factors require a more complex implementation.

Pluggable Software Factors

Our factor plugin architecture eases the addition of new factors in two ways:
1. Automatic detection and reporting of factor level support by workers, and
2. A simple plugin format and API requiring users to implement only a simple set of methods.

All DataMill factors are implemented using the plugin API. Only three methods — for setting,
reading, and testing a factor’s level — and a constant holding the possible factor states are required
for factor plugin implementations. From this small API, a factor can be configured and tested on
worker nodes during experiment execution, or during factor level support detection, where workers
report their support for particular factors. The reported factor level support is used to schedule
experiments appropriately based on a user’s experiment’s factor configuration.

Besides the minimum required methods for a factor implementation, factors support several
hooks for manipulating an experiments environment: prepopulate, preboot, presetup, prerun, and
precollect. The prepopulate hook is executed before populating the benchmark partition, and the
preboot hook is executed before booting into the benchmark partition. The last three correspond to
the three user submitted scripts.

Several new factors are supported by DataMill since the original report on the infrastructure [7].
New factors in DataMill version 2.0 include support for altering the underlying filesystem type,
several compiler wrapper enhancements, support for the autogroup kernel parameter, support for
CPU frequency scaling, and support for altering system time.

DataMill supports modifying the underlying filesystem type during experiment execution. It
is well known that differing file system types have differing IO performance [22]. For every
benchmark job executed on a machine, DataMill reformats the benchmark partition with a particular
filesystem before installing Linux and the DataMill worker software for the upcoming experiment
trial. Currently DataMill supports btrfs, ext3, and ext4. One possible improvement to our current
approach is to take into account the disk size when testing filesystems. For example, btrfs turns on
the extrefs feature for disks of sufficient size which may impact performance.

To support modifications to binary link order and compiler optimization level, we implemented a
custom wrapper that intercepts calls to GCC/clang. This wrapper calculates the new order of objects

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 13

according to the configuration received from the master (i.e., alphabetical, or reverse alphabetical
according to object file names), and then forwards the call to the relevant compiler using the new
object file order. Similarly it intercepts compiler flags that it recognizes and adjusts them based on
the user’s preference, all other factors are passed through without modification.

The DataMill compiler wrapper also supports compiling programs as Position-Independent-
Executables by taking advantage of the -fpie flag new in GCC 3.4. It allows executables to behave
like a shared libraries so that their base addresses are relocatable [23]. Since -fpie is only available
for GCC, only the GCC wrapper class was modified to add the flag when the Position-Independent-
Executable factor is turned on. For both GCC and clang, the -fpie flag is removed from the user’s
list of flags when calls to them are intercepted through the compiler wrapper.

When writing a new compiler-based factor, the existing compiler wrapper for GCC or clang
must be modified. This is an exception to our one file per factor plugin architecture. However, this
structure is necessary so that the compiler wrapper intercepts calls to GCC and clang transparently.
For a compiler-based factor, the factor plugin sets the factor level which is read by the compiler
wrapper on calls to GCC and clang during the execution of the experiment. If the user simply
wishes to use a custom CFLAG that is currently not supported as a factor, the flags appended
to GCC and clang calls are passed to the compiler. General-purpose transformations that are not
already implemented as factors are applied in the same way as on the user’s local computer.

Since version 2.0, the DataMill compiler wrapper transparently supports different compilers
during experiment execution. All compilers on the system point to our compiler wrapper via
symlinks, although the compiler wrapper can simply pass-through calls, or users can opt out of
the compiler wrapper entirely. For instance if both GCC and clang were selected for compilers,
calls to GCC would be redirected to clang in one experiment run and to GCC in another.

Besides compiler factors, DataMill also supports kernel parameters such as autogroup, which
is a scheduling policy that aims to reduce scheduling latency on the desktop. It groups tasks by
the terminal to improve responsiveness on an interactive system. On servers which fork processes,
disabling the autogroup feature tends to keep child processes from migrating. When an experiment
involves multiple concurrent processes, disabling and enabling autogroup may reveal a performance
effect on multi-core systems [24]. To implement the autogroup feature, autogroup scheduling is
compiled into the kernel and a boolean value in the proc filesystem is toggled to enable and disable
the autogroup scheduler.

Similarly, changing the frequency scaling governor often has an impact on performance.
Currently DataMill supports the “performance” and “ondemand” schedulers in the frequency
scaling factor. This factor implemented by calling cpufreq-set to set the governor. During
installation, the kernel is configured to enable CPU frequency scaling and the performance and
ondemand governors are built into the kernel. We chose these two governors to represent “on” and
“off” because performance keeps the CPU frequency at maximum while ondemand scales the CPU
frequency levels.

Another factor of interest is the effect of the system time on performance. Before running a
benchmark, the time is set to 2:00pm and the time of the system is saved. After running a benchmark,
the system time is restored. The time elapsed is calculated and added to the time saved before
running the benchmark.

CASE STUDIES

This section presents two case studies: we first perform a compression algorithm performance
comparison to demonstrate how easy it is to conduct a performance experiment on DataMill, then
we replicate a previously published experiment that revealed performance artifacts related to the link
order of a binary, demonstrating the utility of DataMill for the scientific investigation of computer
performance.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

14 J. C. PETKOVICH ET AL.

Algo. Size (KB) Reduction (KB) %

None 51,900 0 100.000
bzip2 13,232 38,668 25.496

XZ 12,120 39,780 23.353
Table II. Compression Rates for Each Algorithm.

XZ vs. bzip2: Best Bang for Your Buck?

XZ [25] and bzip2 [18] are widely-used compression utilities for UNIX-like operating systems.
While XZ uses the LZMA2 compression algorithm, bzip2 uses the Burrows-Wheeler algorithm.
These two compressors will serve as stand-ins for a “baseline-vs.-proposed-approach” performance
comparison, found in the majority of computer science papers that contain empirical performance
evaluations. As bzip2 is the older of the two compressors, we will treat it as the baseline.

As described in Section DataMill: The User Experience, the only preparation step required for
this experiment is the creation of two DataMill packages, one for XZ 5.0.4 and another for bzip2
1.0.6. The scripts themselves are included in Section DataMill: The User Experience and comprise
a total of 32 lines. We use the system-wide emerge command to install both XZ and bzip2 in order
to simplify installation, precluding the need to include their source code in each package.

In addition to the DataMill scripts, the packages contain the data to be compressed. For this
experiment, we used the Maximum Compression [26] testset. This testset includes various kinds of
files (text, executable, graphics, etc.) and has been used to compare compression algorithms since
2003.

The metrics, which the collect.sh script collects, were execution time and compressed file
size. Since each compression algorithm leads to a different archive size, the metric used for the
comparison is the byte-per-second compression rate, calculated as bytes reduced/execution time.
Table II shows the uncompressed data size, the resulting archive size under each compressor, the
absolute reduction in size, and the resulting archive size as a percentage of the original file size. Note
the both compression algorithms use deterministic algorithms, so the resulting compressed files are
identical between runs and machines. Machine C, an ARMv7 that uses the ext3 filesystem, reports
file sizes 20KB larger than the ones reported by all other machines, which use ext4. This small 0.1%
discrepancy was ignored.

If absolute compression is the only metric of interest, then XZ is clearly the winner; however, if
execution time or the rate of compression are of interest, then experimentation is necessary. By using
DataMill, we can easily compare the two compressors, and measure their susceptibility to different
factors. The DataMill experiment space was configured to include all machines, all link orders, all
optimization flags, and ASLR “on” and “off”. The number of replications was set to 15 to allow
the measurement of dispersion. This led to the generation of 6300 jobs, distributed between seven
machines.† This experiment took approximately five days to complete on the slowest machine, a
600MHz ARMv7 Beagleboard xM. All other machines completed it in less time, and were free to
continue with other experiments.

Figure 8 shows an overview of the data set resulting from this experiment. This facet plot is
divided by optimization flag (top header) and machine (right-hand header). Machines are indexed
with a capital letter, followed by their clock speed and CPU model. Each subplot contains boxplots
for each of the compressors, bzip2 and XZ, where the box denotes the median, the lower quartile,
and the upper quartile, and the whisker extends to the most extreme data point that is within 150%
of the interquartile range of the data set.

The first conclusion is that bzip2 has a better compression rate for all machines under all
link orders and all optimization flags tested. This would suggest that, for users interested in
compression speed, bzip2 is the better alternative. Also of interest is the fact that bzip2 is unaffected

†Data for the “alphabetical” link order in the XZ was not generated, as that object order did not link successfully.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 15

−O0 −O1 −O2 −O3 −Os

400

600

800

1000

190

210

230

250

270

290

600

800

1000

1000

2000

3000

4000

5000

1000

2000

3000

4000

300

400

500

250

300

350

400

A
 1.6G

H
z N

ano X
2

C
 600M

H
z A

R
M

E
 3.2G

H
z P

4
F

 3.4G
H

z i7
G

 3.3G
H

z i5
I 1.6G

H
z P

4
K

 1.6G
H

z P
4

bzip2 xz bzip2 xz bzip2 xz bzip2 xz bzip2 xz
Compressor

C
om

p.
 R

at
e

(k
B

/s
)

Figure 8. XZ vs. bzip2, Compression Rate

by the optimization flag, which suggests it is entirely I/O-bound. XZ, on the other hand, has a
marked performance increase from -O0 to -O1, but negligible differences in performance after
that. The omitted experimental dimensions — link order and ASLR — did not significantly affect
performance, which is demonstrated by the narrow grouping of all samples in the boxplots of
Figure 8 (which contain data from multiple levels in the omitted dimensions).

We use ANOVA [27] to more formally analyze the data. ANOVA is a special-case of the F-test for
differences in variance, and allows us to separate the influence of different factors on variance into
first-order effects and interaction effects, and allows us to understand whether or not factors have
both a significant and substantial effect on our metrics of interest, compression rate, and execution
time in seconds. Although we are measuring performance on a wide variety of machines, we do not
include them as factors in our models. Since we expect different machines to behave differently,
and since it is impractical to isolate hardware internal to machines (e.g., producing otherwise
identical machines with differing amounts of memory, or differing CPU speeds), we analyze results
from different machines seperately. We conduct a multi-way ANOVA on the remaining factors,
compression type, GCC optimization flag, link order, and ASLR, and their second order interactions.
We set the sensitivity of our tests to a confidence level of 95% with a Bonferroni correction since
we block against machine (α = 0.05/7 = 0.007). Prior to computing the ANOVA table, we verified
the homoscedasticity of the data within each experiment block through a widely accepted rule of
thumb, that the largest standard deviation is less than twice the smallest standard deviation. After
computing the ANOVA table for each experiment block, model residuals were examined by hand
using Q-Q plots, each was found to be a reasonable approximation of the normal distribution.

Table III shows the ANOVA table in this experiment fitting a model with up to two-factor
interactions on the execution time data for machine F, a 3.4GHz Core i7. The tables computed
for the remaining machines are similar, as are the conclusions we were able to draw from their
analysis. We are careful to isolate our conclusions to the machine and experiment from which they
were drawn, as we are testing the same hypothesis on many different machines. Because of the

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

16 J. C. PETKOVICH ET AL.

100000

150000

200000

250000

300000

−O0 −O1 −Os −O2 −O3
Optimization Flag

Ta
sk

 C
lo

ck
 (

m
s)

Host

A 1.6GHz Nano X2
C 600MHz ARM
E 3.2GHz P4
F 3.4GHz i7
G 3.3GHz i5
I 1.6GHz P4
K 1.6GHz P4

Figure 9. Effect of GCC Optimization Flags on XZ, by Host

Factor Mean Sq. p-value

Compressor 1.617e+12 <2e-16
Opt. Flag 1.258e+11 <2e-16

Link Order 7.397e+05 0.5807
Addr. Rand. 2.572e+04 0.8907

Compressor:Opt. Flag 1.883e+11 <2e-16
Compressor:Link Order 1.924e+06 0.2347

Compressor:Addr. Rand. 1.511e+06 0.2922
Opt. Flag:Link Order 1.312e+06 0.4624

Opt. Flag:Addr. Rand. 3.791e+06 0.0257
Link Order:Addr. Rand. 2.738e+05 0.8177

Residuals 1.360e+06
Table III. Reduced ANOVA Table for XZ Execution Time on Machine F

isolation of our conclusions, we are subject to the multiple comparisons problem, and as such we
conduct a Bonferroni correction. The mean square column quantifies the change in execution time
attributable to each factor, and the p-value column shows the statistical significance of each factor in
respect to execution time. The model was a good fit, with R2 > 0.99 (i.e., the model explains more
than 99% of the variability in the data), meaning the model can be confidently used to analyze the
data. The table shows that for machine F, the compressor and optimization flags are significant in
isolation (P <0.007), but link order and ASLR are not (P >0.007). Most interestingly, we can prove
the interaction between the compressor and optimization flag through their interaction term, which
is also significant (P <0.007).

Figure 9 shows the effect of GCC optimization flags on XZ’s execution time, with the x-axis
ordering the different optimization flags. While optimization flags are not a continuous dimension,
this ordering facilitates the visualization of the data and represents the activation of various
individual GCC optimization options going from one optimization level to the next. According
to GCC’s manual, the -Os flag is located between -O1 and -O2 because it activates all options from

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 17

-O2 that do not increase binary size, being, therefore, a middle point between the two. Data from
each worker is plotted along an individual line, with 95% confidence intervals shown in light gray
behind each curve. The plot shows a marked and general improvement in performance going from
-O0 to -O1 (as shown in Figure 8), but also reveals a more interesting point: in two of the machines,
there is a decrease in performance going from -O1 to -O2. Despite being a small decrease, this may
merit more investigation, as -O2 is the default optimization flag of several distributions.

This performance comparison demonstrates the utility of DataMill for users interested in
evaluating performance: with just 32 lines of code, 6300 jobs were executed in under a week,
exercising several dimensions that would normally be ignored, and leading to insight that would
be unattainable through manual, one-factor-at-a-time experimentation.

Perlbench: Link Order Effect

We now demonstrate the use of DataMill for users interested in the study of computer performance
evaluation. Mytkowitz et al. [6] report that the link order, the order in which object files are included
in the linking process, of a binary is correlated with runtime performance, and that the optimal
link order varies from host to host. This is generally understood to be a consequence of different
memory and cache layouts leading to different cache and page miss ratios. The authors showed that
the performance of Perlbench — part of SPEC CPU2006 [28] — can vary by more than 8% by
simply modifying the link order.

Trying to reproduce their results, we created an experiment on DataMill to explore the effect of
link order and ASLR on Perlbench performance. We encapsulated Perlbench and SPEC’s “train”
data set in a DataMill package, with scripts and environment file totaling 33 lines. As a result of
time constraints, only three link orders (default, alphabetical and reverse alphabetical) were explored
rather than the full 33 tested by Mytkowitz. Testing the full set of link orders would have extended
the length of the experiment to approximately 12 days. On top of these factors, we also varied
Linux’s ASLR feature. If ASLR is on, one would expect that the effect of link order would be
affected, since ASLR shifts the start point of the region where shared objects are placed in memory.
In other words, the link order and the ASLR factors should be highly correlated. We chose a number
of 15 replications of each configuration to calculate dispersion, generating a total of 630 jobs over
7 machines. The DataMill took approximately 27 hours to finish the full experiment.

Figures 10 and 11 show results for the different metrics for this experiment. These facet plots are
divided by ASLR (top header) and host (right header). Each subplot contains three boxplots, one for
each link order explored. Figure 10(a) shows execution time, and makes it clear that there is indeed
a change in execution time between the different link orders on most cases. An exception to this rule
is machine I, a 1.6GHz Pentium 4, where this effect is minor.

It is also clear that the link order effect does not depend on the ASLR feature of Linux being
turned off; most machines show different execution times between link orders even when ASLR is
turned on. However, machine K (shown in the bottom of Figure 10(a)) shows a link order effect
only when ASLR is turned off, contrary to the other machines.

To help understand this effect, Figure 10(b) shows the cache misses for the experiment‡. This plot
shows that there appears to be a correlation between link order and cache misses for most machines,
but they do not necessarily mirror the execution time effect seen in Figure 10(a).

Finally, Figure 11 shows that there is no apparent correlation between page faults and link order;
even in the case of the Nano X2 and the Xeon machines (top two subplots), the difference in mean
page fault counts between link orders is of less than 1%. A possible explanation for this is that the
sum of code and data for the benchmark is small enough to fit within a page, no matter the order the
object files are linked in.

We conducted a multi-way ANOVA analysis using a procedure similar to that described in
Section XZ vs. bzip2: Best Bang for Your Buck?. We use the same significance level, α = 0.007,
and are subject to the same Bonferroni correction. Table IV shows the reduced ANOVA table

‡Data is missing for the Nano X2 due to the lack of hardware performance counter support.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

18 J. C. PETKOVICH ET AL.

(a) Execution Time

N/A N/A

(b) Cache Misses

Figure 10. Effect of Link Order on Perlbench Execution Time and Cache Misses

for machines A (R2 = 0.977) and K (R2 = 0.855). This table shows that the link order effect is
significant for both of these machines (P <0.007), but only in machine K do the ASLR factor
(P <0.007) and the interaction between ASLR and link order factors (P <0.007) play a part. We
confirmed that ASLR and link order could interact by examining how Linux’s ASLR feature shifts
the start location of linked libraries in memory. In machine A, both of these are not statistically
significant at the 99% confidence level (P >0.007 in both cases). This suggests that the effect of
ASLR, which is present in machine K but not in others, is highly dependent on the machine.

Therefore, while the presence of a cache effect and the lack of a page effect would seem to
explain the variations in execution time between link orders, the correlation between link order
and execution time still merits more investigation. DataMill is a powerful tool for researchers in
performance evaluation, since it allows the systematic variation of correlated factors, such as link
order and ASLR, and the simultaneous collection of multiple relevant metrics, such as cache misses
and page faults.

LESSONS LEARNED

The implementation of the infrastructure and the execution of the experiments detailed in
Section Case Studies, and our experiences maintaining and using DataMill over the past two years,
raised several interesting problems.

Implementation and Maintenance

We anticipated problems arising from maintaining a heterogeneous compute cluster, as each
platform may require individual attention, and experience a variety of mutually exclusive problems,

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 19

Figure 11. Effect of Link Order on Perlbench Page Faults

Mach. Factor Mean Sq. p-value

A

Link Order 135.77 <2e-16
Addr. Rand. 0.07 0.0301

Link Order:Addr. Rand. 0.04 0.0687
Residuals 0.01

K

Link Order 1856.5 <2e-16
Addr. Rand. 1234.6 <2e-16

Link Order:Addr. Rand. 1864.9 <2e-16
Residuals 3.3

Table IV. Reduced ANOVA Table for Perlbench Execution Time on Machines A and K

but we faced several unexpected challenges while keeping DataMill maintained and running over
the course of the two years of its operation.

No matter how reliable we make our infrastructure, problems will inevitably occur, either from
lack of foresight, or from things completely out of our control. For example, even in a city with
relatively stable power-grids, power outages happen, and can cause a plethora of complex problems,
even more-so when an experiment is running. Machines must be able to boot back and self-heal to a
sane state. They also need correctly handle partial, incomplete, and tainted experiment results, and
to rerun experiment trials when necessary. Thus, we needed a policy for handling a misbehaving
worker. The most important product of DataMill are the user’s experiment results, and we must
ensure their validity, thus when a worker fails or is otherwise tainted, we need to evaluate and
ensure the validity of the results produced by that worker. The correct thing to do when incomplete
or possibly tainted results are produced is to collect as much as possible (for debugging), but mark
those results as unusable with clear warnings to the user not to use them to draw conclusions, and
to notify the administrators of the problem. DataMill has several checks in place on the controller

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

20 J. C. PETKOVICH ET AL.

partition to determining whether or not an experiment completed successfully, and when anything
unusual occurs, DataMill reports everything it can about what happened, and marks the job as failed.

Self-healing a broken or misbehaving machine is a challenging problem. The primary challenges
in creating a self-healing worker are, determining when a worker is broken, and determining how
it should work towards fixing itself. We needed to design the main-loop of the controller partition
so that it would never fail so completely that it would not be able to pick up software updates
and patches from upstream that could potentially resolve whatever issue that particular worker was
experiencing.

Exceptions are handled carefully, and any exceptions that reach the outer-loop are treated
implicitly as a trial failure. The only time that an exception is escalated to the top-level is when
the last successful return to sleep mode without any successful job completion (indicating that the
worker is in an infinite loop of exceptions) was over a certain number of days in the past. Once this
condition is satisfied, the worker does a complete self overhaul consisting of the following steps,

1. Gather and upload log files and other information such as dmesg, df, and mount output to the
master, continuing when exceptions are encountered.

2. Attempt to remove its registration on the master, continuing regardless of success.
3. Clear any persistent DataMill state present on disk.
4. Request a re-install of all DataMill worker software and its dependencies.

The master node must also detect worker failures. When a worker has not communicated for three
days, the master triggers a re-registration process for that worker if it ever reconnects. In the
majority of cases, this process is sufficient to self-heal workers when something goes amiss, and
it benefits the DataMill developers and admins by automatically collecting diagnostic information
when something goes wrong. The most frequent unhandled worker failures we encounter are on
machines which cannot boot back up after to a power outage.

Keeping software versions synced between differing architectures is sometimes challenging and
time consuming. The primary goal of DataMill is robust, reliable, and reproducible experimentation.
One of the caveats of this goal is that we need to keep the differing experimental environments as
controlled as possible. Maintaining a heterogeneous cluster of machines means uncovering many
package incompatibilities in older and newer architectures. For the SPARC architecture in particular,
we have ran into problems installing OpenJDK for user’s Java-related experiments. We attempt
to keep the base set of software installed on each machine identical. We also attempt to control
for software versioning by recording all system package versions used during the execution of an
experiment package. Although software versions are already factored out by arranging experiment
results into blocks by worker, which serves both to factor out differences in architecture and software
versions, we do not wish to confound architecture and system package version unless completely
necessary. We control and utilize our own package mirror for the purposes of keeping machines
consistent, and carefully test package updates before deploying them to all workers.

Testing DataMill worker software is an interesting challenge. It is not always obvious how each
architecture will respond to a DataMill software update, so an extensive test suite that is run against
all supported architectures is critical before pushing out a worker update. DataMill comprises
a heterogeneous cluster of machines distributed across the globe, worker updates need to be as
flawless as possible, since it is difficult and time-consuming to debug and fix problems on remote
donor machines.

Debugging packages took considerably longer than expected, especially in the case of Perlbench.
This was mainly due to the non-standard build system distributed by SPEC, which requires manual
configuration of target architecture parameters. Our experience with it led us to create a virtual
worker image on which users can debug their packages. We are currently also investigating a special
debug experiment type which would execute packages once on each available architecture to ensure
it behaves as expected.

DataMill master software is also challenging to update. Master unit and functional tests are
conducted locally during development, and then remotely on a machine identical to the master
server in every way, and which is periodically cloned from the master. This lets us test every aspect
of the master software including the deployment process itself, we have run into several problems

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 21

related to schema migration using real user data vs fabricated sample data. We also have the benefit
of testing in an environment identical to that which is used in production, catching bugs before they
become a problem. We also have virtual worker machines that connect to our test-master and which
can run full experiments, letting us perform functional tests of the entire experimentation process.

Lessons from Community Usage

One general usage pattern we observed is that many users collect data for multiple trials of an
experiment per job. Although the workers reboot between each job to clear the cache, many
researchers ignore the effect of caches in favor of gathering research data quickly. While DataMill
supports partial results files as jobs finish, researchers who run experiments that do not reboot
between trials have asked for a live view of the results. This is because results are uploaded after
jobs finish. Jobs with multiple trials take a longer amount of time to finish, and DataMill is currently
designed to reboot for every trial.

New users of DataMill found our wiki page on getting started with DataMill helpful to learn how
to use DataMill. This page explains how to make an experiment package including the setup, run,
and collect scripts. It also gives a brief set of steps on testing an experiment package with DataMill.
To test a package, the user only needs to launch the DataMill virtual worker and type in a public
URL to download their package onto the virtual machine. To debug a package, log benchmark and
controller logs are provided in a folder. One user who benchmarked only C++ programs found that
he only needed to run the virtual worker once to get his first package working. In the process of
debugging his package with the virtual worker, he found the benchmark and controller logs helpful.

Users prefer to use DataMill over personal equipment for benchmarking, mainly due to the
different architectures and heterogeneous hardware available on DataMill. Secondly, they also favor
the quick and easy interface for submitting experiments and collecting the results. In particular,
users have found the experiment create user interface, which has sliders for hardware factors and
checkboxes for software factors, to be intuitive and effortless to for selecting and adjusting various
factors. However, researchers who only need to gather performance data for software are in a
different situation. They tend to leave the software factors as default and run their experiments
over the full range of hardware.
Lessons from the RV Competition

The Runtime Verification (RV) conference started in 2001 as an annual workshop. It is now
an international conference for researchers to share their findings in runtime verification, which
is the study of how to design artifacts for monitoring and analyzing system executions [29, 30].
Competition of Software for Runtime Verification (CSRV), first introduced in RV 2014, aims to
allow researchers to share software tools, libraries, and frameworks for the instrumentation and
runtime verification of software. A total of eleven institutions participated in CSRV 2014.

During CSRV 2014, DataMill provided the infrastructure necessary to run experiments, collect
results, and share experiment setups. Users were provided with individual accounts to a web
interface to submit their experiments. For the purposes of RV competition, DataMill executed a
total of 151 experiments with 2677 jobs for the competition. Of these jobs, 832 were executed on
a machine set aside for collecting final results. Of the 383 jobs that failed, most of them were from
packages that were not properly tested. One common mistake made in these packages was not
outputting the file to be collected for analysis at the end of the collect.sh script. As a result,
jobs would fail due to missing result files. Another common mistake made was the selection of
architectures unsupported by software used in the package. Many packages on ARM in Gentoo
need to be unmasked before they can be installed. Thus, some packages failed to compile their
necessary dependencies when ARM was selected as an architecture. All of failed jobs were soft
failures handled by our worker design. Workers recovered automatically and continued to fetch new
jobs after these failures.

The main issues encountered during CSRV 2014 came from the submission of experiments and
collection of results. As a result of the structure and organization of the competition, participants
ran experiments individually and submitted their results by hand to a spreadsheet, a manual-
labor-intensive situation which is precisely what DataMill is designed to avoid. The infrastructure

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

22 J. C. PETKOVICH ET AL.

necessary to automate the entirety of the repetitive steps needed to carry out the competition exist
in DataMill, but were not leveraged by the competition organizers at the time.

For RV 2015, the organizers decided to run the competition as a single experiment with multiple
packages after all the individual submissions are tested. This ensures that the experiments are
executed on equal footing, on the same machines with the same software environments, and blocked
and randomized automatically by DataMill. It also allows the utilization of the entire DataMill
infrastructure, and its full set of machines, providing greater confidence in the results of the
competition. Finally, running the competition in this manner completely automates the collection
and collation of results, so that no additional manual effort would be required.

RELATED WORK

Various researchers [4, 3, 31, 32, 33, 34] argue for more statistical rigor in computer science
and groups such as the Evaluate Collaboratory [35] have been created to pursue more rigorous
experimentation practices. The paper survey by Tichy et al. [5] concludes that numerous
publications in the field of computer performance evaluation show substantial flaws in experiment
design and execution. Vitek and Kalibera [14] report that in PLDI’11, a selective conference where
experimental results are commonly published, 39 of the 42 papers that published experimental
results did not report a measure of uncertainty in their data, obviating the need for more rigorous
statistical analysis in computer science. A survey conducted by Desprez et al. [2] draws similar
conclusions from a paper survey they conducted. Kalibera and Jones [15] raise a similar point,
presenting a random effects model tailored to computer experiments, while also noting that current
textbook approaches may be insufficient in the field. Georges et al. [36] argue for the use of
statistically rigorous analysis methods, however, their approach is only limited to narrow field of
statistical analysis methods.

Mytkowicz et al. [6] demonstrate that seemingly innocuous experimental setup details, such as the
UNIX environment size or the benchmark link order, can have a significant impact on performance.
Harji et al. [16] show that the Linux kernel has had a series of performance affecting issues, and
that papers that present data measured on Linux could contain incorrect results. Kalibera et al. [17]
show that random symbol names generated by a compiler leads to different memory layouts at run
time, and, consequently, random variations in performance.

Curtsinger et al. [37, 38] reports performance regressions of up to 57% as a result of manipulating
link-order, and developed a tool, STABILIZER, for combating this effect. STABILIZER improves
the robustness of computer performance measurements by randomizing the memory layout of the
stack, code, and data memory regions of a process at runtime. This affords fine control of the
effects of memory layout during execution. Further, the tool forces any memory layout effects to
approximate a Gaussian distribution, permitting the use of traditional statistical analysis techniques.

Yasugi et al. [39] have developed a method to benchmark programs that cancels code placement
effects. The problem is that code placement changes instruction addresses of otherwise equivalent
executable programs. These similar programs often exhibit different performance. Yasugi et
al. developed a proper evaluation scheme that statistically summarizes the performance effect of
several artificial programs with different code placement.

We have previously investigated the impact of memory layout factors [40] reported by
Mytkowicz, Kalibera, and others. We found that, for the set of machines and benchmarks tested,
out of ASLR and POSIX environment padding, only ASLR had a statistically significant impact on
performance, but that even in the worst-case, ASLR had a negligible effect size for most practical
purposes.

Desprez et al. [2] surveys numerous large-scale computing installations that follow a similar
objective to our cause; to create reproducible, extensible, applicable, and revisable experiments.
The authors provide a survey of experimental methodologies and survey a selection of experimental
testbeds. In contrast to our design the testbeds surveyed are often comprised of homogeneous nodes
and do not exhibit a lot of variation in the hardware used. While the computing resources are vastly
available and the installations provide support for complex experiments (i.e. including distributed

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 23

systems), the experiment setup is described as a manual arduous process despite exposing high level
interfaces.

The infrastructures have been used to implement demonstrators for federated clouds and projects
in the field distributed systems. Most notably among the surveyed computing installations is
OpenCirrus [41]. In addition to virtualized environments they also provide access to the physical
machines. The lowest level service consists of a physical resource set (PRS). A PRS comprises a
set of VLAN-isolated compute, storage and network resources. The PRSs are dynamically allocated
and managed through a PRS service. Using the PRS paradigm different levels of abstractions can
be configured that suit research applications reaching from low level systems research (e.g., the
evaluation of OS kernel parameters) to complex distributed systems (e.g., several virtual machines
that run a distributed middleware). The reader should note, while the objective of creating create
reproducible, extensible, applicable, and revisable experiments are aligned with our cause, the focus
of the systems surveyed by Desprez et al. [2] is on distributed systems. As a result the hardware
infrastructure is decidedly homogeneous, which simplifies the experiment setup and configuration.
While testbeds like OpenCirrus [41] support access to low-level hardware features, those features
expose little variability compared to the applications we are targeting.

PlanetLab [42, 43] provides planetary-scale data services and is used by the research community
to deploy, evaluate and access planetary-scale network services. Planetlab provides so called slices
to its users that consists of distributed networked virtual machines (VMs). The VMs are hosted
on physical machines that are maintained in a communal fashion. In order to become a user
of PlanetLab, one has to dedicate some servers to PlanetLab. PlanetLab exposes an API for
provisioning the slices and has facilities to isolate the network of the individual slices. This API
is accessible through the PlanetLab shell and XMLRPC. To add nodes to his slice, the PlanetLab
website and the PlanetLab API are two options. With the XMLRPC interface, the user authenticates
with his PlanetLab username and password to add nodes to his slice. PlanetLab uses CoDeploy
to efficiently and scalably distribute software from one source to many receivers [44]. CoDeploy
requires HTTP access to a directory on the user’s local filesystem [45]. CoDeploy is designed to
push content to hundreds of PlanetLab nodes without consuming lots of bandwidth at the source
node. Once the application the user wishes to run is deployed to all nodes, CoDeploy provides a
tool called MultiQuery for the user to run a command simultaneously on a large number of nodes
via SSH [46]. In summary, PlanetLab’s infrastructure is used predominantly to evaluate and deploy
distributed systems [45], including content-distribution networks, name services, location services,
file-streaming services, fault-tolerant scalable services, peer-to-peer networks, distributed anomaly
detection, distributed research allocation, routing overlays, and resource discovery.

Because the experiment environment exposed to the user is a virtualized machine, PlanetLab is
not an optimal choice for computer performance experiments that seek to evaluate the impact of
varying hardware environment factors. This conclusion is consistent with papers listed [45]; none
of the publications include computer performance experiments. On the contrary, DataMill runs all
experiments without virtualization and even reboots machines between each job. Although DataMill
does not provide SSH access to workers, an interface for selecting the hardware and software factors
for experiments is provided.

Various other experimentation infrastructures have been proposed with similar properties to
PlanetLab. Jaffe et al. [47] describe a production platform with similar features to PlanetLab.
The project links various large data centers in an effort to provide an experimentation platform
for distributed systems. Unfortunately, the hardware chosen for the data centres is homogeneous
and does not aid in the exploration of large factor space.

CloudLab [48] is an infrastructure for researching cloud computing. In terms of hardware,
CloudLab is a distributed infrastructure with about 5000 CPU cores, 300-500 Terabytes of storage,
and 2x10 Gbps network interfaces with Software Defined Networking at each site. CloudLab
provides researchers with a state of the art environment for researching cloud computing. In terms
of software, CloudLab’s software stack is based on Emulab, which provides access to emulation,
live-internet experimentation, 802.11 wireless, and Software-Defined Radio. Although emulation
gives the user root access, it is not suitable for running benchmarks.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

24 J. C. PETKOVICH ET AL.

HTCondor [49] is a distributed job scheduler designed for computation-intensive distributed
workloads. HTCondor shares some of DataMill’s characteristics — such as having users prepare
packages and submit them for execution — but since it it geared toward maximizing a cluster’s
computing throughput, it is not well suited for clean-room performance evaluation.

Open Curation for Computer Architecture Modeling (OCCAM) [50] is a project for
computer architecture experimentation that aims to make experiments reproducible. OCCAM
proves infrastructure components such as standardized simulators and benchmarks for computer
architecture researchers. OCCAM aims to allow researchers to more quickly and easily show that
their techniques improve the state-of-the-art. Experiments in OCCAM are created with a workflow
builder that allows researchers to connect various objects together. OCCAM provides tools to
build, debug, and deploy these objects including simulators, benchmarks, and tracers. The workflow
builder contains forms for configuring simulators and a GUI for connecting objects together.

LAVA from Linaro is an open source software QA and validation system for ARM boards that
shares a few similarities with DataMill. Like DataMill, LAVA is a distributed and heterogeneous
experimentation infrastructure, it has master and worker nodes. Jobs from the master node are
distributed to workers. The two infrastructures differ in that LAVA is a validation lab for hardware,
and DataMill is a platform for performance evaluation. As a result, their main feature sets also
differ as shown in Table V. For example, LAVA results are reported as pass or fail whereas results in
DataMill are specified by the user. DataMill allows researchers to select hardware and software
factors, and LAVA only partially supports the selection of hardware factors through specifying
boards in the test definition. LAVA offers a diverse selection of ARM boards, a commandline XML-
RPC interface, and testing of U-boot images. LAVA requires the use of either a KVM switch or
devices that support PXE-boot to run tests on targets [51], but DataMill supports any device that
can run Linux and connect to a network. For debugging software packages, LAVA offers the LAVA
test shell, which is an SSH session, while DataMill provides a virtual machine with the same set of
software on workers. Furthermore, in LAVA test definitions are written in JSON and commands to
run inside the test are written in YAML [52]. Contrarily, DataMill only requires the run and collect
BASH scripts.

LAVA Datamill
VM for testing benchmark
packages

No Yes

Selection of hardware factors Partial (boards only) Yes

Selection of software factors No Yes
Commandline XML-RPC
interface

Yes No

Testing of U-boot images Yes No
OpenID login Yes No
Web interface to submit jobs Yes Yes
Types of tests Pass/Fail unit tests User specified
Debugging benchmark
packages

Test shell Virtual machine

Table V. LAVA feature comparison with DataMill

FUTURE WORK

As part of our future work we consider various improvements to the existing system architecture.
Huang et al. [53] have shown that maintaining security and accountability in a distributed
experiment execution framework is challenging. Our current architecture was geared towards
providing a proof-of-concept prototype. As part of our future work we want to implement a

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 25

centrally managed security policy. This would add accountability for individual job executions and
transparency to maintainers of remote workers such that the impact of malicious attacks on the
infrastructure is minimal.

While our current prototype monitors basic performance metrics of user’s submitted experiments,
users must ultimately analyze to analyze their experiment-specific results. In the medium-term we
want to provide an application interface for distributed data-analysis tools (i.e., Hadoop [54]), and
services (i.e., Amazon Web Services [55]) to facilitate the analysis of experiment data. Our plan
is to provide a template engine for various standard benchmarks that can be easily customized by
users.

LAVA and DataMill share many similarities which we plan to leverage. LAVA’s architecture
is similar to the architecture of DataMill, and it is conceivable that features currently unique to
DataMill could be implemented as specific test images in the LAVA infrastructure. We plan to
experiment with using LAVA images as a starting point for installing Gentoo on ARM boards. In
particular, the availability of a working kernel alleviates the problem of finding a working kernel tree
and configuration. Further more, we plan to contribute DataMill worker images for x86 machines
which would report results to the master node, allowing LAVA users to collect more complex results.

CONCLUSION

In this paper we discuss DataMill version 2.0. DataMill provides services to set up and execute
robust, replicable, and reproducible experiments. DataMill enables researchers to publish their
experiment software, setup, and results. In this way experimental results can be reproduced
easily. Many aspects of complex performance experimentation are automated by DataMill enabling
users to set up performance experiments easily. Due to its support for many different hardware
platforms and automated factor variation, DataMill can cover a larger experiment space than
typically considered by most researchers. For example, we have shown that a complex performance
experiment consisting of 6300 jobs that span various factors can be set up by configuring a package
with just 32 lines of shell code. We believe that DataMill can serve as a watermark for experiments
conducted for performance-oriented conferences. DataMill can be accessed and utilized through its
web interface here [8].

REFERENCES

1. Oliveira A. Measuring and predicting computer software performance: Tools and approaches. PhD Thesis,
University of Waterloo 2015.

2. Desprez F, Fox G, Jeannot E, Keahey K, Kozuch M, Margery D, Neyron P, Nussbaum L, Perez C, Richard O, et al..
Supporting Experimental Computer Science. Technical Report, Argonne National Laboratory Technical Memo
2012.

3. Peterson L, Pai VS. Experience-Driven Experimental Systems Research. ACM Communications 2007; 50(11):38–
44, doi:10.1145/1297797.1297820. URL http://doi.acm.org/10.1145/1297797.1297820.

4. Tichy WF. Should Computer Scientists Experiment More? IEEE Computer 1998; 31(5):32–40.
5. Tichy WF, Lukowicz P, Prechelt L, Heinz EA. Experimental Evaluation in Computer Science: A Quantitative Study.

Systems Software 1995; 28:9–18.
6. Mytkowicz T, Diwan A, Hauswirth M, Sweeney PF. Producing Wrong Data Without Doing Anything Obviously

Wrong! SIGPLAN Notes Mar 2009; 44(3):265–276, doi:10.1145/1508284.1508275. URL http://doi.acm.
org/10.1145/1508284.1508275.

7. de Oliveira AB, Petkovich JC, Reidemeister T, Fischmeister S. DataMill: Rigorous Performance Evaluation Made
Easy. Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering, ICPE ’13, ACM:
New York, NY, USA, 2013; 137–148, doi:10.1145/2479871.2479892. URL http://doi.acm.org.proxy.
lib.uwaterloo.ca/10.1145/2479871.2479892.

8. The DataMill Team. DataMill. http://datamill.uwaterloo.ca/. Accessed Jul. 12th, 2015.
9. Antony J. Design of Experiments for Engineers and Scientists. Butterworth-Heinemann, 2003.

10. Montgomery D. Design and Analysis of Experiments. John Wiley & Sons, 2008.
11. Kalibera T, Jones R. Rigorous benchmarking in reasonable time. ACM SIGPLAN Notices 2013; 48(11):63–74.
12. Kalibera T, Jones RE. Quantifying performance changes with effect size confidence intervals. Technical Report,

Technical Report 4–12, University of Kent 2012.
13. NLANR/DAST. Iperf. http://iperf.sourceforge.net/. Accessed Sep. 17th, 2012.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

http://doi.acm.org/10.1145/1297797.1297820
http://doi.acm.org/10.1145/1508284.1508275
http://doi.acm.org/10.1145/1508284.1508275
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/2479871.2479892
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/2479871.2479892
http://datamill.uwaterloo.ca/
http://iperf.sourceforge.net/

26 J. C. PETKOVICH ET AL.

14. Vitek J, Kalibera T. Repeatability, Reproducibility, and Rigor in Systems Research. Proceedings of The Ninth ACM
International Conference on Embedded Software, EMSOFT ’11, ACM: New York, NY, USA, 2011; 33–38, doi:
10.1145/2038642.2038650. URL http://doi.acm.org/10.1145/2038642.2038650.

15. Kalibera T, Jones R. Handles Revisited: Optimising Performance and Memory Costs in a Real-Time Collector.
Proceedings of The International Symposium on Memory Management, ISMM ’11, ACM: New York, NY,
USA, 2011; 89–98, doi:10.1145/1993478.1993492. URL http://doi.acm.org/10.1145/1993478.
1993492.

16. Harji AS, Buhr PA, Brecht T. Our Troubles With Linux and Why You Should Care. Proceedings of the Second
Asia-Pacific Workshop on Systems, APSys ’11, ACM: New York, NY, USA, 2011; 2:1–2:5, doi:10.1145/2103799.
2103802. URL http://doi.acm.org/10.1145/2103799.2103802.

17. Kalibera T, Tuma P. Precise Regression Benchmarking with Random Effects: Improving Mono Benchmark Results.
Proceedings of the Third European Conference on Formal Methods and Stochastic Models for Performance
Evaluation, EPEW’06, Springer-Verlag: Berlin, Heidelberg, 2006; 63–77, doi:10.1007/11777830 5. URL http:
//dx.doi.org/10.1007/11777830_5.

18. Julian Seward. bzip2 and libbzip2. http://www.bzip.org/. Accessed Sep. 17th, 2012.
19. Vince Weaver. Perf Event Overhead Measurements. http://web.eecs.utk.edu/˜vweaver1/

projects/perf-events/benchmarks/rdtsc_overhead/. Accessed Sep. 17th, 2012.
20. Linaro Limited. Welcome to LAVA. https://validation.linaro.org/. Accessed Mar. 27th. 2014.
21. distcc. distcc: a fast, free distributed C/C++ compiler. https://code.google.com/p/distcc/. Accessed

Feb. 10th. 2014.
22. Bouqata B, Carothers C, Szymanski B, Zaki M. Understading filesystem performance for data mining applications.

Proceedings of the 6th International Workshop on High Performance Data Mining: Pervasive and Data
Stream Mining (HPDM: PDS 03), Citeseer, 2003. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.134.4945&rep=rep1&type=pdf.

23. Payer M, Gross TR. String Oriented Programming: When ASLR is Not Enough. Proceedings of the 2Nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop, PPREW ’13, ACM: New York, NY, USA, 2013;
2:1–2:9, doi:10.1145/2430553.2430555. URL http://doi.acm.org/10.1145/2430553.2430555.

24. Kemp, S. Optimizing servers - Tuning the GNU/Linux Kernel. http://tweaked.io/guide/kernel/.
Accessed Mar. 7th. 2014.

25. The Tukaani Project. XZ Utils. http://tukaani.org/xz/. Accessed Sep. 17th, 2012.
26. W Bergmans. Maximum Compression. http://www.maximumcompression.com/data/files/

index.html. Accessed Sep. 17th, 2012.
27. Jain R. The Art of Computer Systems Performance Analysis. Wiley Professional Computing, Wiley, 1991.
28. Standard Performance Evaluation Corporation. SPEC CPU2006. http://www.spec.org/cpu2006/.

Accessed Sep. 17th, 2012.
29. Bonakdarpour B, Navabpour S, Fischmeister S. Time-triggered runtime verification. Formal Methods in System

Design Aug 2013; 43(1):29–60, doi:10.1007/s10703-012-0182-0. URL http://link.springer.com/10.
1007/s10703-012-0182-0.

30. Watterson C, Heffernan D. Runtime verification and monitoring of embedded systems. IET Software Oct 2007;
1(5):172–179, doi:10.1049/iet-sen:20060076.

31. Denning PJ. ACM President’s Letter: What is Experimental Computer Science? ACM Communications Oct 1980;
23(10):543–544, doi:10.1145/359015.359016. URL http://doi.acm.org/10.1145/359015.359016.

32. Denning PJ. ACM President’s Letter: Performance Analysis: Experimental Computer Science as its Best. ACM
Communications Nov 1981; 24(11):725–727, doi:10.1145/358790.358791. URL http://doi.acm.org/10.
1145/358790.358791.

33. Comer DE, Gries D, Mulder MC, Tucker A, Turner AJ, Young PR. Computing as a Discipline. ACM
Communications Jan 1989; 32(1):9–23, doi:10.1145/63238.63239. URL http://doi.acm.org/10.1145/
63238.63239.

34. Denning PJ. Is Computer Science Science? ACM Communications Apr 2005; 48(4):27–31, doi:10.1145/1053291.
1053309. URL http://doi.acm.org/10.1145/1053291.1053309.

35. Evaluate Collaboratory. Evaluate Collaboratory Technical Reports. http://evaluate.inf.usi.ch/
technical-reports/. Accessed Aug. 1st, 2015.

36. Georges A, Buytaert D, Eeckhout L. Statistically Rigorous Java Performance Evaluation. Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications, OOPSLA ’07,
ACM: New York, NY, USA, 2007; 57–76, doi:10.1145/1297027.1297033. URL http://doi.acm.org/10.
1145/1297027.1297033.

37. Curtsinger C, Berger E. Stabilizer: Enabling statistically rigorous performance evaluation. Technical Report,
University of Massachusetts 2012.

38. Curtsinger C, Berger ED. STABILIZER: Statistically Sound Performance Evaluation. Proceedings of the
Eighteenth International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, ACM: New York, NY, USA, 2013; 219–228, doi:10.1145/2451116.2451141. URL http:
//doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/2451116.2451141.

39. Yasugi M, Matsuda Y, Ugawa T. A proper performance evaluation system that summarizes code placement
effects. Proceedings of the 11th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, ACM, 2013; 41–48.

40. de Oliveira AB, Petkovich JC, Fischmeister S. How much does memory layout impact performance? a wide study.
Intl. Workshop Reproducible Research Methodologies, 2014; 23–28. URL http://www.occamportal.org/
images/reproduce/papers/reproduce14_paper_06.pdf.

41. Campbell R, Gupta I, Heath M, Ko SY, Kozuch M, Kunze M, Kwan T, Lai K, Lee HY, Lyons M, et al.. Open
CirrusTMcloud Computing Testbed: Federated Data Centers for Open Source Systems and Services Research.
Proceedings of The 2009 Conference on Hot Topics in Cloud Computing, HotCloud’09, USENIX Association:

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

http://doi.acm.org/10.1145/2038642.2038650
http://doi.acm.org/10.1145/1993478.1993492
http://doi.acm.org/10.1145/1993478.1993492
http://doi.acm.org/10.1145/2103799.2103802
http://dx.doi.org/10.1007/11777830_5
http://dx.doi.org/10.1007/11777830_5
http://www.bzip.org/
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/benchmarks/rdtsc_overhead/
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/benchmarks/rdtsc_overhead/
https://validation.linaro.org/
https://code.google.com/p/distcc/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.4945&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.4945&rep=rep1&type=pdf
http://doi.acm.org/10.1145/2430553.2430555
http://tweaked.io/guide/kernel/
http://tukaani.org/xz/
http://www.maximumcompression.com/data/files/index.html
http://www.maximumcompression.com/data/files/index.html
http://www.spec.org/cpu2006/
http://link.springer.com/10.1007/s10703-012-0182-0
http://link.springer.com/10.1007/s10703-012-0182-0
http://doi.acm.org/10.1145/359015.359016
http://doi.acm.org/10.1145/358790.358791
http://doi.acm.org/10.1145/358790.358791
http://doi.acm.org/10.1145/63238.63239
http://doi.acm.org/10.1145/63238.63239
http://doi.acm.org/10.1145/1053291.1053309
http://evaluate.inf.usi.ch/technical-reports/
http://evaluate.inf.usi.ch/technical-reports/
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/2451116.2451141
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/2451116.2451141
http://www.occamportal.org/images/reproduce/papers/reproduce14_paper_06.pdf
http://www.occamportal.org/images/reproduce/papers/reproduce14_paper_06.pdf

DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 27

Berkeley, CA, USA, 2009. URL http://dl.acm.org/citation.cfm?id=1855533.1855534.
42. Peterson L, Bavier A, Fiuczynski ME, Muir S. Experiences Building PlanetLab. Proceedings of The 7th Symposium

on Operating Systems Design and Implementation, OSDI ’06, USENIX Association: Berkeley, CA, USA, 2006;
351–366. URL http://dl.acm.org/citation.cfm?id=1298455.1298489.

43. Paterson L, Roscoe T. The Design Principles of PlanetLab. Operating Systems Review January 2006; 40(1):11–16.
44. Park, K, Pai V, Peterson, L. CoDeploy - A Scalable Deployment Service for PlanetLab. http://codeen.cs.

princeton.edu/codeploy/ visited 2015-07-10.
45. PlanetLab. PlanetLab Bibliography. http://www.planet-lab.org/biblio visited 2012-09-28.
46. PlanetLab. HelloWorldTutorial PlanetLab. http://svn.planet-lab.org/wiki/

HelloWorldTutorial visited 2015-07-10.
47. Jaffe E, Bickson D, Kirkpatrick S. Everlab: A Production Platform for Research in Network Experimentation and

Computation. Proceedings of the 21th Large Installation System Administration Conference, 2007; 203–213.
48. The University of Utah. CloudLab. https://www.cloudlab.us/. Accessed Jul. 18th, 2015.
49. Tannenbaum T, Wright D, Miller K, Livny M. Condor – a distributed job scheduler. Beowulf Cluster Computing

with Linux, Sterling T (ed.). MIT Press, 2001.
50. Bruce Childer. OCCAM. http://www.occamportal.org/. Accessed Jul. 18th, 2015.
51. Linaro Limited. Deploying a KVM (x86 64) Device. https://validation.linaro.org/static/

docs/kvm-deploy.html. Accessed Mar. 27th. 2014.
52. Linaro Limited. Writing a LAVA test definition. https://validation.linaro.org/static/docs/

writing-tests.html. Accessed Mar. 27th. 2014.
53. Huang M, Bavier A, Peterson L. PlanetFlow: Maintaining Accountability for Network Services. SIGOPS Oper.

Syst. Rev. Jan 2006; 40(1):89–94, doi:10.1145/1113361.1113376. URL http://doi.acm.org/10.1145/
1113361.1113376.

54. Apache Software Foundation. Hadoop. http://hadoop.apache.org/. Accessed Sep. 17th, 2012.
55. Amazon Web Services LLC. Amazon Web Services. http://aws.amazon.com/. Accessed Sep. 17th, 2012.

APPENDIX

ApacheBench http://httpd.apache.org/docs/2.2/programs/ab.html
Emacs http://www.gnu.org/software/emacs/
CLAPACK http://www.netlib.org/clapack/
CoreMark https://www.eembc.org/coremark/
GFortran https://gcc.gnu.org/wiki/GFortran
Himeno http://accc.riken.jp/2444.htm
Iozone http://www.iozone.org/
JavaLinpack http://www.netlib.org/benchmark/linpackjava/
GCC https://gcc.gnu.org/
clang http://clang.llvm.org/
JFlex http://jflex.de/
LAME http://lame.sourceforge.net/
Libgcrypt http://www.gnu.org/software/libgcrypt/
libMicro https://java.net/projects/libmicro
MiBench http://wwweb.eecs.umich.edu/mibench/
NUMA-bench http://code.compeng.uni-frankfurt.de/projects/numabench/
PgBench http://www.postgresql.org/docs/devel/static/pgbench.html
pipebench http://www.habets.pp.se/synscan/programs.php?prog=pipebench
Postmark http://www.filesystems.org/docs/auto-pilot/Postmark.html
SPECCPU2006 https://www.spec.org/cpu2006/
SPECjvm2008 https://www.spec.org/jvm2008/
SQlite https://www.sqlite.org/
X264 http://www.videolan.org/developers/x264.html

Table VI. Software and Benchmarks Tested with DataMill

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

http://dl.acm.org/citation.cfm?id=1855533.1855534
http://dl.acm.org/citation.cfm?id=1298455.1298489
http://codeen.cs.princeton.edu/codeploy/
http://codeen.cs.princeton.edu/codeploy/
http://www.planet-lab.org/biblio
http://svn.planet-lab.org/wiki/HelloWorldTutorial
http://svn.planet-lab.org/wiki/HelloWorldTutorial
https://www.cloudlab.us/
http://www.occamportal.org/
https://validation.linaro.org/static/docs/kvm-deploy.html
https://validation.linaro.org/static/docs/kvm-deploy.html
https://validation.linaro.org/static/docs/writing-tests.html
https://validation.linaro.org/static/docs/writing-tests.html
http://doi.acm.org/10.1145/1113361.1113376
http://doi.acm.org/10.1145/1113361.1113376
http://hadoop.apache.org/
http://aws.amazon.com/

28 J. C. PETKOVICH ET AL.

CPU architecture Number
of

CPU
cores

CPU
model

CPU
fre-

quency
(MHz)

RAM
size

(KB)

RAM type

Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3
Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3
Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3
Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3

AM37x ARM Cortex-A8 1 armv7l 797 500932 LPDDR
Intel(R) Pentium(R) M processor 1 i686 1694 901048 SDRAM

Intel(R) Pentium(R) 4 CPU 2 i686 2993 892688 DDR
Intel(R) Pentium(R) 4 CPU 2 i686 3200 900992 DDR
Intel(R) Pentium(R) 4 CPU 1 i686 2400 900968 DDR
Intel(R) Pentium(R) 4 CPU 1 i686 1595 253236 SDRAM

Quad-Core AMD Opteron(tm) Processor 8378 16 x86 64 2411 32963948 DDR2
Intel(R) Pentium(R) 4 CPU 2 i686 2998 892800 DDR
Intel(R) Pentium(R) 4 CPU 2 i686 2993 892800 SDRAM
Intel(R) Pentium(R) 4 CPU 2 i686 3200 900992 DDR
Intel(R) Pentium(R) 4 CPU 2 i686 2793 900964 SDRAM
Intel(R) Pentium(R) 4 CPU 1 i686 1614 901048 DRAM
Intel(R) Pentium(R) 4 CPU 2 i686 3198 900992 DDR
Intel(R) Pentium(R) D CPU 2 x86 64 2993 2054624 DDR
Intel(R) Pentium(R) 4 CPU 2 i686 3200 900992 DRAM

Intel(R) Xeon(R) CPU E5-2699 v3 36 x86 64 2301 16337272 Other
Intel(R) Xeon(R) CPU 5160 2 x86 64 3000 2826628 DDR2

Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706100 DDR3
Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706108 DDR3
Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706100 DDR3
Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706108 DDR3

Intel(R) Xeon(R) CPU E5-2690 v2 20 x86 64 3001 8148976 DDR3
Intel(R) Xeon(R) CPU E5-2640 v2 16 x86 64 2001 8149428 DDR3
Intel(R) Core(TM) i7-2600K CPU 8 x86 64 3401 8094688 DDR3

ARMv7 Processor rev 10 (v7l) 4 armv7l 791 896568 DDR3
ARMv7 Processor rev 10 (v7l) 4 armv7l 791 896568 DDR3
ARMv7 Processor rev 10 (v7l) 4 armv7l 1988 896568 DDR3
ARMv7 Processor rev 10 (v7l) 4 armv7l 1988 896568 DDR3

Intel(R) Core(TM) i5-2500 CPU 4 x86 64 3301 8150896 DDR3
AMD G-T56N Processor 2 x86 64 1650 1647368 DDR3
AMD G-T56N Processor 2 x86 64 1650 1647368 DDR3

Freescale i.MX 6 ARM Cortex-A9 Quad core 4 armv7l 1024 1025472 DDR3
Freescale i.MX 6 ARM Cortex-A9 Quad core 4 armv7l 1024 1025472 DDR3
Freescale i.MX 6 ARM Cortex-A9 Quad core 4 armv7l 1024 1025472 DDR3

Table VII. Hardware Platforms Currently Active in DataMill

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

	Introduction
	Background
	DataMill: The User Experience
	Packages
	Experiment Creation
	Experiment Results

	DataMill: The Infrastructure
	Factors: Architecture and Implementation
	Pluggable Software Factors

	Case Studies
	XZ vs. bzip2: Best Bang for Your Buck?
	Perlbench: Link Order Effect

	Lessons Learned
	Implementation and Maintenance
	Lessons from Community Usage

	Related Work
	Future Work
	Conclusion
	Appendix

